Dolor Menstrual Y Dismenorrea

Therefore, the wind fins in accordance with these embodiments of the invention can be constructed of lower-cost, less complex, lighter-weight (but highly durable) materials, making power generation with this new technology significantly more affordable and cost-effective. In short, preferred embodiments of this invention have outstanding potential to significantly expand wind power’s contribution to the global energy supply. This aspect, combined with the wind fin’s lower purchase price, environmental advantages, and improved aesthetics, is expected to enable the wind fin to readily penetrate the marketplace.

Dolor Neuropático Central

Ejercicios para dolor de hombro - Dietas de nutricion y.. The fin would have a foam core with 2 lb/ft3 foam density (see FIG. To achieve this load typically a float diameter for a 10 KW device having 36 inch turbine pipe 28 would be selected to be about 20 feet. In a preferred embodiment, the invention is an apparatus for extracting power from a moving fluid stream, said apparatus comprising: an immobile mast; a sleeve that pivots about said mast; a wing structure selected from the group consisting of: (1) a single fin comprising at least two stand-off arms, each of which stand-off arms having two ends, a first end that is fixed to said sleeve and a second end pivotably attached to the hinge axis or spar of the forward edge of a symmetrical airfoil, and (2) a multiple-element structure comprising a first airfoil element having two ends, a first end that is fixed to said sleeve and a second end upon which a pivot is mounted, and a second airfoil element having a forward edge that is attached to each said pivot, wherein said airfoils, either singly or as a combination, present airfoil surfaces to the moving fluid stream that generate lift first in one direction that is transverse the direction of movement of the moving stream and then in another direction that is opposite said one direction during an oscillation of said airfoils in the moving fluid stream; and a power take-off mechanism that converts the pivoting motion of the sleeve surrounding the mast to unidirectional rotation in order to drive an electricity generator.

Preferably the turbine means is formed to have an outside periphery and a central axis with a plurality of turbine vanes located in an array and each radially projecting on the turbine means between the periphery and the central axis. Preferably, the hinge axis or spar of said single symmetrical airfoil or fin is located between 5 percent and 45 percent of the overall chord length of said fin as measured from the leading edge of said fin.

  • El batido FPC (fresa-piña-col)
  • Aplica 2 series de 10 repeticiones
  • Inflamación del músculo cardiaco (miocarditis)
  • ¿Cuáles son los resultados de los trata
  • Dolor torácico, dificultad respiratoria
  • Urgencia para orinar y ardor al hacerlo

In another preferred embodiment, the invention is an apparatus for extracting power from a moving fluid stream, said apparatus comprising: a mast that functions as a drive shaft, which is supported by a lower tower structure; a wing structure connected directly to the mast or drive shaft selected from the group consisting of: (1) a single fin comprising at least two stand-off arms, each of which stand-off arms having two ends, a first end that is fixed to said mast and a second end pivotably attached to the hinge axis or spar of the forward edge of a symmetrical airfoil, and (2) a multiple-element structure comprising a first airfoil element having two ends, a first end that is fixed to said mast and a second end upon which a pivot is mounted, and a second airfoil element having a forward edge that is attached each said pivot, wherein said airfoils, either singly or as a combination, present airfoil surfaces to the moving fluid stream that generate lift first in one direction that is transverse the direction of movement of the moving stream and then in another direction that is opposite said one direction during an oscillation of said airfoils in the moving fluid stream; and a power take-off mechanism that converts the oscillating, bidirectional rotation of the mast to unidirectional rotation in order to drive an electricity generator.

Dolor Muscular Piernas

In a preferred embodiment, the first airfoil element in a multiple-element wing structure comprises a symmetrical airfoil and the second airfoil element further comprises a symmetrical airfoil that is pivotably attached to said first airfoil element. Preferably, said airfoil elements are selected from the group consisting of: a ribbed airfoil, with a lightweight skin that conforms to symmetrical wing ribs, a molded foam airfoil covered with a lightweight skin, a framed sheet airfoil; and a self-inflating airfoil. In summary, preferred embodiments of the disclosed wind power generation technology have the following virtues: (1) the wing structures do not oscillate so rapidly that ultra-high-strength materials are required or that these wing structures present a threat to birds or bats; (2) wing structures can be made of a wide range of relatively lightweight and inexpensive materials and also can be constructed in many different colors and patterns, enabling them to blend more readily than wind turbines into both built or natural environments; (3) forces are distributed along the length of the mast rather than being concentrated at the top of the structure, as is the case with horizontal-axis wind turbines; therefore, the structure does not need to be as complex and robustly constructed, reducing the overall system cost and increasing longevity; (4) the mast can either be free-standing for shorter systems, or guyed for taller systems; therefore, simple, relatively inexpensive, low-load bearing structures can be used with this new technology; (5) power extraction is at the ground level, below the main wing structure; this facilitates ready access to the generator for maintenance; (6) in order to avoid destruction during high winds, the wing structures can easily be locked using a simple, inexpensive device, allowing the system to feather or wind vane; alternatively, wing structure oscillation can be halted by moving a weight in the trailing edge of the wing structure toward the center of mass of the wing structure; (7) unlike Darrieus-type vertical-axis wind turbine systems (but like most horizontal-axis wind turbine systems), the wind fin is self-starting; and (8) the disclosed technology does not have the spacing problem of both horizontal-axis and vertical-axis wind turbines; wind fin systems can be installed in clusters, closely side-by-side, without diminishing their effectiveness.

Initial testing indicates that this new technology also is much more affordable and cost-effective than wind turbines. This system is also preferably guyed, as shown in FIG. Said power takeoff mechanism 16 preferably comprises two overrunning clutches (clockwise clutch 30 and counterclockwise clutch 32), bevel gear 34 and gearbox 36, although any other mechanism for converting oscillating motion into rotary motion would suffice. Pat. No. 4,452,211, counter rotating cylinders are not used and thus the necessity of having two counter rotating turbines is not needed. In a preferred embodiment, embodiments of mechanism 12 having more than two elements are constrained to adopt a preferred airfoil shape.

Dolor De Estomago

FIG. 41 presents cross sectional views of different embodiments of the wing structure. FIG. 2B is a cross sectional view of the trailing edge of a preferred embodiment of the wing structure of the invention, the trailing edge comprising a spring-loaded trim bias member. 33 and 34, are included in at least some sections of trailing element 22 or fin 23 as a way to facilitate the oscillation and control the oscillation speed of wing structure 12. These weights are positioned in a controlled manner along a pathway transverse to mast 14, which would be horizontal in the embodiments shown. Prostata sintomas dolor de espalda . The weights would be moved toward the trailing edge of the airfoil to facilitate the oscillation of wing structure 12 and moved towards the center of mass of the airfoil to control the oscillation speed of wing structure 12. In one preferred embodiment, weight movement control is informed by a sensor assembly.

Ejercicios para fortalecer la espalda baja en casa.. This means that the system cost per watt at a 20 mph rated speed would be $8.00 with the Bergey Windpower XL.1 and that with the Southwest Windpower Whisper 200 would be $4.14, compared to only $1.80 for the wind fin. The manufacturer’s price (including tower) for the Bergey Windpower XL.1 is $3,400 and the manufacturer’s price (with tower) for the Southwest Windpower Whisper 200 is $3,315, compared to the predicted manufacturer’s price for a 1 kW wind fin of only $1,800. To assess the frequency of this oscillating fin, a linear distribution of weight was assumed with the maximum weight at the mast, diminishing to zero at the trailing edge. 11. This approximation is carried out with a linkwork arrangement that exhibits a non-linear and unequal angular rate of change of the angular orientations of elements 50, 52 and 54. FIG. Preferably, the apparatus further comprises: a gear arrangement or a linkwork arrangement that links said second following airfoil element and a fourth following airfoil element.