US9995269B2 – Power Converting Apparatus – Google Patents

A portion of a torque of the first power transmitting member 11 may be used to rotate the input shaft 10, and a remaining portion of the torque may be used to relatively rotate the second power transmitting member 21 connected to the first power transmitting member 11, and the second drum 22 with respect to the energy transmitting shaft 20 so that the second tensile force transmitting member 50 may be wound over the second drum 22, whereby the spring 51 of the energy storage unit may stretch to store an elastic energy. TECHNICAL FIELD Embodiments of the present invention relate to a power converting apparatus, and more particularly, to a power converting apparatus that may increase a generation efficiency by receiving a power from a power source, producing electricity by rotating an output shaft connected to a generator using a portion of the received power, accumulating a remaining portion of the received power in an energy storage device, and rotating the output shaft using the accumulated energy when a power is not transmitted from the power source, the power source that floats in the ocean, performs irregular motions by waves within a predetermined range, and generates an intermittent linear power.

  • Deterioro de la oxigenación materna
  • Sexo femenino
  • Opcionalmente, función de masaje en el respaldo y en el asiento
  • Piedras en los riñones

By configuring a power transmitting rope to be wound and restored by a return apparatus when the buoyant body moves downward, the wave power generation apparatus may generate a power continuously, and increase a structural stability irrespective of an external force by waves. To transmit a power iteratively, the moved rope is to be wound over the shaft again. Further, there is a method in which a buoyant body corresponding to a power source is connected to a shaft with a rope, and when the rope is moved by the power source, the rope wound over the shaft is unwound and rotates the shaft, whereby a rotation power is obtained. Thus, in a wave power generation system that produces electricity by waves with long occurrence periods, a number of rotations of a generator connected to the output shaft 30 may be maintained to be uniform, and stable generation of electricity may be achieved.

Dolores Musculares Remedios

When the buoyant body 1 configured to generate a linear power is unable to perform a linear motion or when a tensile force of the first tensile force transmitting member 40 decreases, the elastic energy stored in the spring 51 of the energy storage unit may be converted into a tensile force of the second tensile force transmitting member 50 and thus, the second drum 22 and the second power transmitting member provided as an integral body with the second drum 22 may perform counterclockwise rotary motions.

Thus, when the second power transmitting member 21 rotates by receiving a power from the first power transmitting member 11, the second power transmitting member 21 may rotate relatively freely with respect to the energy transmitting shaft 20. Conversely, when the second power transmitting member 21 rotates counterclockwise by receiving energy from the energy storage unit, the unidirectional rotation member 24 may restrict the energy transmitting shaft 20 and the second power transmitting member 21, whereby the energy transmitting shaft 20 and the second power transmitting member 21 may rotate together. The unidirectional rotation member 14 disposed between the first power transmitting member 11 and the input shaft 10 may restrict a counterclockwise motion and thus, the first power transmitting member 11 and the input shaft 10 may rotate together. Thus, in a case in which a linear motion of the buoyant body occurs in a horizontal direction by waves, the power converting apparatuses may not convert the linear power into a rotation power, or a conversion efficiency may remarkably decrease and mechanical damage or fatigue may occur.

Technical Solutions According to an aspect of the present invention, there is provided a power converting apparatus including a first tensile force transmitting member configured to transmit a tensile force generated in response to a linear motion of a linear power source; an input shaft including a first power transmitting member configured to be connected to the first tensile force transmitting member and rotate; an energy transmitting shaft including a second power transmitting member configured to be connected to the first power transmitting member and perform a rotary motion; an energy storage unit configured to be connected to the second power transmitting member, store an elastic energy or a potential energy in response to a unidirectional rotation of the second power transmitting member, and rotate the energy transmitting shaft using the stored elastic energy or the potential energy when a linear kinetic force generated by the buoyant body dissipates or decreases; an output shaft configured to rotate by receiving a torque alternately from the input shaft and the energy transmitting shaft; a first input device configured to transmit a torque of the input shaft to the output shaft; and a second input device configured to transmit a torque of the energy transmitting shaft to the output shaft.

Dolor Muscular Sin Fiebre

Thus, the plurality of first tensile force transmitting members 40 connected to the buoyant body 1 may connect the buoyant body 1 to the input shaft 10 in different directions, for example, vectors. Conversely, the first power transmitting member 11 may be coupled to the input shaft 10 by a known decoupler that prevents a power transmission from the first power transmitting member 11 to the input shaft 10 when a tensile force greater than or equal to a set value is applied from the first tensile force transmitting member 40, in turn preventing damage to constituent elements to be caused by an excessive load. The first tensile force transmitting member 40 may be configured by applying a rope, a wire, or a chain that may be mechanically flexible but not stretchable, thereby transmitting a tensile force effectively.