Dolor de hombro y cuello lado derecho

Dolor de Espalda - Dolorfin Consultorios Quiropracticos Timing mechanism 212 regulates feeding of balls 300 from top 200.1 of buoyancy shaft 200. Timing mechanism 212 comprises ball feeder 212.2, overflow shaft 212.3, and spoke proximity sensor 212.4. During operation, balls 300 are carried by fluid 206 and exit top 200.1 of buoyancy shaft 200 via floatation, traveling to release mechanism 212.5. Ball feeder 212.2 and release mechanism 212.5 are paced and controlled by spoke proximity sensor 212.4, wherein spoke proximity sensor senses wheel spoke 101 position, releasing and delivering balls 300 onto spokes 101. Ball feeder 212.2 controls the speed of sealed shaft gravity-buoyancy generator 10, as best shown in FIG. Governor/brake 109 is controlled by ball feeder 212.2 to regulate the speed of sealed shaft gravity-buoyancy generator 10. The natural rotational speed of the apparatus is a function of the density of balls 300, radius of the wheel 100, and size of buoyancy shaft 200 and collector box 205. Governor/brake 109 further compensates for variability of braking resulting from loading of electrical generator 400, wherein electrical generator 400 acts as a brake balancing the speed of wheel 100. As wheel 100 gains more weights during start-up mode, if wheel 100 is not properly controlled by generator 400 under load, the speed of wheel 100 can increase out of control; therefore, speed of rotation of wheel 100 must be determined and governed accordingly.

While maximum process speed, and thereby power delivered via rotation of wheel 100, is limited by gravity and buoyancy forces, timing mechanism 212 regulates process speed and initiates cyclic operation of sealed shaft gravity-buoyancy generator 10, wherein timing mechanism 212 comprises spoke proximity sensor 212.4. Spoke proximity sensor 212.4 can be any suitable sensor known in the art, such as, for exemplary purposes only, an optical, magnetic, hydraulic, electrical, electronic and/or mechanical sensor. Through effective and efficient use of natural gravitational and buoyant forces, the present invention offers the ability of stabilizing a growing national addicted dependency on foreign oil, as well as creating a new energy generating industry. Another feature and advantage of the present invention is its ability to be utilized for stationary or motive power generation. Dolor de espalda y ardor al orinar . Yet another feature and advantage of the present invention is its use of readily available materials and components.

Dolor Neuropatico Herpes

Hermetically-sealed double-shaft box 214 negates pressure developed by the head of fluid 206 within buoyancy shaft 200, yet still allows passage of balls 300 to joining section 214.5 of buoyancy shaft 200. Collector box 205, together with, alternately, first column 214.1 or second column 214.2, comprise J-shaped vessel 201, wherein J-shaped vessel 201 permits balls 300 to rise under buoyant force 500 to top 200.1 of buoyancy shaft 200. J-shaped vessel 201, when filled with fluid 206 and closed at joining section 214.5, will support fluid 206, preventing fluid 206 from exiting collector box 205 due to vacuum held at valve 215.1. Atmospheric pressure is exerted at collection box 205, thereby pressing fluid 206 upward. Level 207 increases every time balls 300 are dropped into weight collector box 205, wherein level 219 drops every time balls 300 exit top 200.1 of buoyancy shaft 200. To adjust levels 207 and 219, fluid must be transferred from one fluid chamber 217.21 or 218.21 to the other fluid chamber 218.21 or 217.21, respectively, to stabilize the volume of fluid 206 until the active buoyancy column 214.1 or 214.2 is full with balls 300; therefore, controller 220 must sense and/or measure the quantity and rate of passing of balls 300 through buoyancy shafts 214.1 and 214.2 in device 214 via sensors 213.7 and 213.8, and controller 220 must actuate air valves 213.4 and 213.5, respectively, providing air pressure to synchronously actuate slicegate valves 215.1 and 216.1 together as a set, while slicegate valves 215.2 and 216.2 act together as a separate set.

Bottom 205.1 of collector box 205 is in fluid communication with buoyancy shaft 200 via entry chamber 209, wherein balls 300, passing through dry gate 208, forcefully enter fluid 206 in bottom 205.1 of collector box 205, bounce off doorstop 211, pass into fluid 206 within entry chamber 209 and subsequently travel into buoyancy shaft 200. Doorstop 211 is suitably angled to direct balls 300 into entry chamber 209, wherein doorstop 211 is comprised of a resilient material, such as, for exemplary purposes only, rubber. Level 207 of fluid 206 is maintained in collector box 205 below gate 208, thereby permitting balls 300 to enter collector box 205 without losing any fluid 206. Hermetically-sealed double-shaft box 214 via operation of valves 215.1, 215.2, 216.1 and 216.2 permits only one column 214.1 or 214.2 to be open to joining section 214.5 and one column 214.2 or 214.1 to be open to dividing section 214.4. In the event of a loss of control air, both columns 214.1 and 214.2 are closed at either of respective slicegate valves 215.1 or 216.2 for column 214.1, and slicegate valves 215.2 and 216.1 for column 214.2, thereby maintaining a sealed condition and eliminating fluid spillage.

Step 1-Prior to balls 300 being processed, all slicegate valves 215.1, 215.2, 216.1 and 216.2 must be as set in pre-start procedure hereinabove. In view of the importance of operation of valves 215.1, 215.2, 216.1 and 216.2 to selectively permit entry of balls 300 to either column 214.1 or 214.2, the sequence of operation is set forth in FIGS. 7, illustrated therein are the operational details of slicegate valves 215.1, 215.2, 216.1 and 216.2 by reference to slicegate valve 215.1 as an exemplar. For sake of the following example, the condition selected is that wherein slicegate valve 215.1 is open, slicegate valve 215.2 is closed, slicegate valve 216.1 is open and slicegate valve 216.2 is closed. Merely listing or numbering the steps of a method in a certain order does not constitute any limitation on the order of the steps of that method. TECHNICAL FIELD The present invention relates generally to energy generating apparatuses, and more specifically to a sealed-shaft gravity-buoyancy energy system and method utilizes buoyant principles to lift masses to a selected height for subsequent use in gravitationally driving an energy generating mill.

According to its major aspects and broadly stated, the present invention in its preferred form is a sealed-shaft gravity-buoyancy energy system and method of use thereof, wherein a wheel is powered by ball masses which fall under gravitational force, thereby causing the wheel to rotate. FIG. Que puedo tomar para el dolor muscular . 12 is a relational diagram (layout) of displacement volume tanks of a sealed-shaft gravity-buoyancy energy system according to an alternate embodiment of the present invention. 11 is substantially equivalent in form and function to that of the preferred embodiment detailed and illustrated in FIGS. It is further envisioned in an alternate embodiment that in lieu of fluid activated valves that may include air valves, electrical valves could be utilized. 10, illustrated therein is an alternate embodiment of device 10, wherein the alternate embodiment of FIG. The sealed shaft and the diaphragm tanks allow a negative pressure in the shaft, wherein atmospheric pressure maintains the height of fluid therein and permits the insertion of weighted masses into the stages of the process, whilst maintaining fluid levels within limits at the entry location and the exit location of the masses from the shaft.

8, illustrated therein are details of fluid volume regulator 202 and timing mechanism 212. Fluid volume regulator 202 maintains level 219 of fluid 206 within buoyancy shaft 200. Timing mechanism 212 releases and delivers balls 300 onto wheel spokes 101 at a selected rate. By increasing the air volume in drive chamber 218.21 or 217.21 on the open fluid shaft side, the level 219 of fluid 206 is increased and vice versa. 6 a, wherein buoyancy column 214.1 is shown in “emptying mode” and buoyancy column 214.2 is shown in “collecting mode”, slicegate valve 215.1 is in open position A, thereby permitting balls 300 to rise into joining section 214.5 while slicegate valve 216.2 is in closed position B, and thus providing a vacuum head thereunder.

  1. I-balls 300 are loaded into top 200.1 until all balls 300 have been loaded
  2. Resonancia magnética
  3. Artritis reumatoidea
  4. Dolor pélvico
  5. Un relleno de algodón o materia textil

The ball masses are collected and inserted into a fluid shaft, wherein the fluid shaft comprises at least two separate columns to provide a negative prime as detailed hereunder, and sealing of the fluid shaft so as to prevent fluid loss. The device overcomes the difficulties encountered in sealing the buoyancy shaft by utilizing two columns and associated tanks to transfer fluid by injecting air in and out of two diaphragm-defined chambers inside the tanks, wherein utilization of such diaphragm-defined chambers is more energy efficient than pumping fluid. 12 comprises buoyancy columns 214.1 and 214.2, wherein buoyancy columns 214.1 and 214.2 are in fluid communication with first tank 217 and second tank 218, respectively. Electrical generator 400 is in rotational communication with axial shaft 103, wherein axial shaft 103 drives electrical generator 400. Electrical generator 400 is in electrical communication with energy storage device 700, wherein electrical energy generated by electrical generator 400 is stored for subsequent use in energy storage device 700. In lieu of storing electrical energy in energy storage device 700, energy generated by system 10 may be directly utilized for any electrical-power-requiring device.